Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2116049

ABSTRACT

The BNT162b2 vaccine induces neutralizing activity (NA) in serum, but no data are available on whether a third-dose activates specific-immunity within the oral mucosa, representing the primary route of viral-entry. To carefully address this issue, we investigated if such immunity is boosted by SARS-CoV-2-infection; how long it is maintained over-time; and if it protects against the SARS-CoV-2 lineage B.1 (EU) and the emerging Delta and Omicron variants. NA was measured in plasma and saliva samples from: uninfected SARS-CoV-2-Vaccinated (SV), subjects infected prior to vaccination (SIV), and subjects who were infected after the second (SIV2) or the third (SIV3) vaccine dose. Samples were collected immediately before (T0), 15 days (T1), and 90 days (T2) post third-dose administration (SV and SIV), or 15 days post-infection (SIV2 and SIV3). In all the enrolled groups, NA in plasma and saliva: (i) was higher against EU compared to the other variants at all time-points (SV: T0 and T1, EU vs. both Delta and Omicron p < 0.001; T2 p < 0.01) (SIV: T0, EU vs. Delta p < 0.05; EU vs. Omi p < 0.01; T1 and T2 EU vs. Delta p < 0.01; EU vs. Omi p < 0.001); (ii) was boosted by the administration of the third dose; iii) declined over-time, albeit being detectable in almost all subjects at T2. The monitoring of NA over time will be important in clarifying if different NA levels may influence either acquisition or course of infection to properly plan the timing of a fourth vaccine dose administration.


Subject(s)
COVID-19 , Vaccines , Humans , BNT162 Vaccine , Saliva , COVID-19/prevention & control , SARS-CoV-2
2.
Vaccines (Basel) ; 10(5)2022 May 19.
Article in English | MEDLINE | ID: covidwho-1928676

ABSTRACT

BACKGROUND: Protozoa of the genus Leishmania are characterized by their capacity to target macrophages and Dendritic Cells (DCs). These microorganisms could thus be exploited for the delivery of antigens to immune cells. Leishmania tarentolae is regarded as a non-pathogenic species; it was previously used as a biofactory for protein production and has been considered as a candidate vaccine or as an antigen delivery platform. However, results on the type of immune polarization determined by L. tarentolae are still inconclusive. METHODS: DCs were derived from human monocytes and exposed to live L. tarentolae, using both the non-engineered P10 strain, and the same strain engineered for expression of the spike protein from SARS-CoV-2. We then determined: (i) parasite internalization in the DCs; and (ii) the capacity of the assayed strains to activate DCs and the type of immune polarization. RESULTS: Protozoan parasites from both strains were effectively engulfed by DCs, which displayed a full pattern of maturation, in terms of MHC class II and costimulatory molecule expression. In addition, after parasite infection, a limited release of Th1 cytokines was observed. CONCLUSIONS: Our results indicate that L. tarentolae could be used as a vehicle for antigen delivery to DCs and to induce the maturation of these cells. The limited cytokine release suggests L. tarentolae as a neutral vaccine vehicle that could be administered in association with appropriate immune-modulating molecules.

3.
Cells ; 11(10)2022 05 19.
Article in English | MEDLINE | ID: covidwho-1862727

ABSTRACT

Recent evidence suggests that SARS-CoV-2 hinders immune responses via dopamine (DA)-related mechanisms. Nonetheless, studies addressing the specific role of DA in the frame of SARS-CoV-2 infection are still missing. In the present study, we investigate the role of DA in SARS-CoV-2 replication along with potential links with innate immune pathways in CaLu-3 human epithelial lung cells. We document here for the first time that, besides DA synthetic pathways, SARS-CoV-2 alters the expression of D1 and D2 DA receptors (D1DR, D2DR), while DA administration reduces viral replication. Such an effect occurs at non-toxic, micromolar-range DA doses, which are known to induce receptor desensitization and downregulation. Indeed, the antiviral effects of DA were associated with a robust downregulation of D2DRs both at mRNA and protein levels, while the amount of D1DRs was not significantly affected. While halting SARS-CoV-2 replication, DA, similar to the D2DR agonist quinpirole, upregulates the expression of ISGs and Type-I IFNs, which goes along with the downregulation of various pro-inflammatory mediators. In turn, administration of Type-I IFNs, while dramatically reducing SARS-CoV-2 replication, converges in downregulating D2DRs expression. Besides configuring the CaLu-3 cell line as a suitable model to study SARS-CoV-2-induced alterations at the level of the DA system in the periphery, our findings disclose a previously unappreciated correlation between DA pathways and Type-I IFN response, which may be disrupted by SARS-CoV-2 for host cell invasion and replication.


Subject(s)
COVID-19 Drug Treatment , Interferon Type I , Dopamine , Down-Regulation , Humans , Interferon Type I/genetics , Receptors, Dopamine D2 , SARS-CoV-2 , Up-Regulation
4.
Front Immunol ; 13: 820250, 2022.
Article in English | MEDLINE | ID: covidwho-1775664

ABSTRACT

Background: SARS-CoV-2 transmission mainly occurs through exposure of the upper airway mucosa to infected secretions such as saliva, which are excreted by an infected person. Thus, oral mucosal immunity plays a central role in the prevention of and early defense against SARS-CoV-2 infection. Although virus-specific antibody response has been extensively investigated in blood samples of SARS-CoV-2-infected patients and vaccinees, local humoral immunity in the oral cavity and its relationship to systemic antibody levels needs to be further addressed. Material and Methods: We fine-tuned a virus neutralization assay (vNTA) to measure the neutralizing activity (NA) of plasma and saliva samples from 20 SARS-CoV-2-infected (SI), 40 SARS-CoV-2-vaccinated (SV), and 28 SARS-CoV-2-vaccinated subjects with a history of infection (SIV) using the "wild type" SARS-CoV-2 lineage B.1 (EU) and the Delta (B.1.617.2) strains. To validate the vNTA results, the presence of neutralizing antibodies (NAbs) to the spike receptor binding domain (RBD) was evaluated with an ELISA assay. Results: NA to SARS-CoV-2 lineage B.1 (EU) was present in plasma samples from all the tested subjects, with higher titers in SIV compared to both SI and SV. Conversely, NA was detected in saliva samples from 10.3% SV, 45% SI, and 92.6% SIV, with significantly lower titers in SV compared to both SI and SIV. The detection of NAbs in saliva reflected its reduced NA in SV. Discussion: The difference in NA of plasma vs. saliva was confirmed in a vNTA where the SARS-CoV-2 B.1 and Delta strains were tested head-to-head, which also revealed a reduced NA of both specimens compared to the B.1 variant. Conclusions: The administration of SARS-CoV-2 vaccines was associated with limited virus NA in the oral cavity, as measured in saliva and in comparison to plasma. This difference was more evident in vaccinees without a history of SARS-CoV-2 infection, possibly highlighting the importance of local exposure at the site of virus acquisition to effectively prevent the infection and block its spread. Nevertheless, the presence of immune escape mutations as possibly represented by the SARS-CoV-2 Delta variant negatively affects both local and systemic efficacy of NA associated with vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , COVID-19 Vaccines , Humans , Saliva , Spike Glycoprotein, Coronavirus
5.
J Clin Med ; 10(24)2021 Dec 09.
Article in English | MEDLINE | ID: covidwho-1572519

ABSTRACT

BACKGROUND: The effects of immunomodulators in patients with Coronavirus Disease 2019 (COVID-19) pneumonia are still unknown. We investigated the cellular inflammatory and molecular changes in response to standard-of-care + pidotimod (PDT) and explored the possible association with blood biomarkers of disease severity. METHODS: Clinical characteristics and outcomes, neutrophil-to-lymphocyte ratio (NLR), plasma and cell supernatant chemokines, and gene expression patterns after SARS-CoV-2 and influenza (FLU) virus in vitro stimulation were assessed in 16 patients with mild-moderate COVID-19 pneumonia, treated with standard of care and PDT 800 mg twice daily (PDT group), and measured at admission, 7 (T1), and 12 (T2) days after therapy initiation. Clinical outcomes and NLR were compared with age-matched historical controls not exposed to PDT. RESULTS: Hospital stay, in-hospital mortality, and intubation rate did not differ between groups. At T1, NLR was 2.9 (1.7-4.6) in the PDT group and 5.5 (3.4-7.1) in controls (p = 0.037). In the PDT group, eotaxin and IL-4 plasma concentrations progressively increased (p < 0.05). Upon SARS-CoV-2 and FLU-specific stimulation, IFN-γ was upregulated (p < 0.05), while at genetic transcription level, Pathogen Recognition Receptors (TRLs) were upregulated, especially in FLU-stimulated conditions. CONCLUSIONS: Immunomodulation exerted by PDT and systemic corticosteroids may foster a restoration in the innate response to the viral infection. These results should be confirmed in larger RCTs.

6.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1438628

ABSTRACT

The reason behind the high inter-individual variability in response to SARS-CoV-2 infection and patient's outcome is poorly understood. The present study targets the sphingolipid profile of twenty-four healthy controls and fifty-nine COVID-19 patients with different disease severity. Sera were analyzed by untargeted and targeted mass spectrometry and ELISA. Results indicated a progressive increase in dihydrosphingosine, dihydroceramides, ceramides, sphingosine, and a decrease in sphingosine-1-phosphate. These changes are associated with a serine palmitoyltransferase long chain base subunit 1 (SPTLC1) increase in relation to COVID-19 severity. Severe patients showed a decrease in sphingomyelins and a high level of acid sphingomyelinase (aSMase) that influences monosialodihexosyl ganglioside (GM3) C16:0 levels. Critical patients are characterized by high levels of dihydrosphingosine and dihydroceramide but not of glycosphingolipids. In severe and critical patients, unbalanced lipid metabolism induces lipid raft remodeling, leads to cell apoptosis and immunoescape, suggesting active sphingolipid participation in viral infection. Furthermore, results indicated that the sphingolipid and glycosphingolipid metabolic rewiring promoted by aSMase and GM3 is age-dependent but also characteristic of severe and critical patients influencing prognosis and increasing viral load. AUCs calculated from ROC curves indicated ceramides C16:0, C18:0, C24:1, sphingosine and SPTLC1 as putative biomarkers of disease evolution.


Subject(s)
COVID-19/blood , Sphingolipids/blood , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Female , Humans , Lipidomics , Male , Middle Aged , Prognosis , SARS-CoV-2/isolation & purification , Severity of Illness Index , Sphingolipids/analysis , Sphingomyelins/analysis , Sphingomyelins/blood , Young Adult
7.
Cells ; 10(7)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1314589

ABSTRACT

MicroRNAs are gene expression regulators associated with several human pathologies, including those generated by viral infections. Their role in SARS-CoV-2 infection and COVID-19 has been investigated and reviewed in many informative studies; however, a thorough miRNA outline in SARS-CoV-2-infected pregnant women (SIPW), at both systemic and placental levels, is missing. To fill this gap, blood and placenta biopsies collected at delivery from 15 asymptomatic SIPW were immediately analysed for: miRNA expression (n = 84) (QPCR array), antiviral/immune mRNA target expression (n = 74) (QGene) and cytokine/chemokines production (n = 27) (Multiplex ELISA). By comparing these results with those obtained from six uninfected pregnant women (UPW), we observed that, following SARS-CoV-2 infection, the transcriptomic profile of pregnant women is significantly altered in different anatomical districts, even in the absence of clinical symptoms and vertical transmission. This characteristic combination of miRNA and antiviral/immune factors seems to control both the infection and the dysfunctional immune reaction, thus representing a positive correlate of protection and a potential therapeutic target against SARS-CoV-2.


Subject(s)
COVID-19/genetics , MicroRNAs/genetics , Pregnancy Complications, Infectious/genetics , Adult , COVID-19/blood , COVID-19/diagnosis , Female , Humans , MicroRNAs/analysis , MicroRNAs/blood , Placenta/metabolism , Pregnancy , Pregnancy Complications, Infectious/blood , Pregnancy Complications, Infectious/diagnosis , SARS-CoV-2/isolation & purification , Transcriptome , Young Adult
8.
Cells ; 9(9)2020 08 24.
Article in English | MEDLINE | ID: covidwho-732817

ABSTRACT

Following influenza infection, rs2248374-G ERAP2 expressing cells may transcribe an alternative spliced isoform: ERAP2/Iso3. This variant, unlike ERAP2-wt, is unable to trim peptides to be loaded on MHC class I molecules, but it can still dimerize with both ERAP2-wt and ERAP1-wt, thus contributing to profiling an alternative cellular immune-peptidome. In order to verify if the expression of ERAP2/Iso3 may be induced by other pathogens, PBMCs and MDMs isolated from 20 healthy subjects were stimulated with flu, LPS, CMV, HIV-AT-2, SARS-CoV-2 antigens to analyze its mRNA and protein expression. In parallel, Calu3 cell lines and PBMCs were in vitro infected with growing doses of SARS-CoV-2 (0.5, 5, 1000 MOI) and HIV-1BAL (0.1, 1, and 10 ng p24 HIV-1Bal/1 × 106 PBMCs) viruses, respectively. Results showed that: (1) ERAP2/Iso3 mRNA expression can be prompted by many pathogens and it is coupled with the modulation of several determinants (cytokines, interferon-stimulated genes, activation/inhibition markers, antigen-presentation elements) orchestrating the anti-microbial immune response (Quantigene); (2) ERAP2/Iso3 mRNA is translated into a protein (western blot); (3) ERAP2/Iso3 mRNA expression is sensitive to SARS-CoV-2 and HIV-1 concentration. Considering the key role played by ERAPs in antigen processing and presentation, it is conceivable that these enzymes may be potential targets and modulators of the pathogenicity of infectious diseases and further analyses are needed to define the role played by the different isoforms.


Subject(s)
Aminopeptidases/genetics , Betacoronavirus/immunology , Coronavirus Infections/genetics , Immunization/methods , Leukocytes, Mononuclear/virology , Macrophages/virology , Pneumonia, Viral/genetics , Protein Isoforms/genetics , Antigen Presentation/genetics , Blood Donors , COVID-19 , Cell Line, Tumor , Coronavirus Infections/virology , Gene Expression/immunology , Genotype , HIV Infections/genetics , HIV Infections/virology , HIV-1/immunology , Humans , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Minor Histocompatibility Antigens/genetics , Pandemics , Pneumonia, Viral/virology , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2 , Transcription, Genetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL